3,353 research outputs found

    Non-reciprocal Optical Mirrors Based on Spatio-Temporal Modulation

    Full text link
    The recent surge of interest in temporal modulation schemes to induce magnet-free non-reciprocity has inspired several exciting opportunities for photonic technology. Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. Conventional optical mirrors are reciprocal: in a given plane of incidence, reflection is independent of the sign of the angle of incidence, which enables two people to simultaneously look at each other through their reflection. In contrast, we propose a strategy to dramatically break this symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant guided optical modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in reflection allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons

    Dual methods and approximation concepts in structural synthesis

    Get PDF
    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins

    ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    Get PDF
    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    Raman scattering through surfaces having biaxial symmetry

    Full text link
    Magnetic Raman scattering in two-leg spin ladder materials and the relationship between the anisotropic exchange integrals are analyzed by P. J. Freitas and R. R. P. Singh in Phys. Rev. B, {\bf 62}, 14113 (2000). The angular dependence of the two-magnon scattering is shown to provide information for the magnetic anisotropy in the Sr_14Cu_24O_41 and La_6Ca_8Cu_24O_41 compounds. We point out that the experimental results of polarized Raman measurements at arbitrary angles with respect to the crystal axes have to be corrected for the light ellipticity induced inside the optically anisotropic crystals. We refer quantitatively to the case of Sr_14Cu_24O_41 and discuss potential implications for spectroscopic studies in other materials with strong anisotropy.Comment: To be published as a Comment in Phys. Rev.

    Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous evaluation by different molecular and physiological assays of <it>Staphylococcus aureus </it>(<it>S. aureus</it>) responses to heat shock exposure yielded a still fragmentary view of the mechanisms determining bacterial survival or death at supra-physiological temperatures. This study analyzed diverse facets of <it>S. aureus </it>heat-shock adjustment by recording global transcriptomic and metabolic responses of bacterial cultures shifted for 10 min from 37°C to a sub-lethal (43°C) or eventually lethal (48°C) temperature. A relevant metabolic model of the combined action of specific stress response mechanisms with more general, energy-regulating metabolic pathways in heat-shocked <it>S. aureus </it>is presented.</p> <p>Results</p> <p>While <it>S. aureus </it>cultures shifted to 43°C or left at 37°C showed marginal differences in growth and survival rates, bacterial cultures exposed to 48°C showed a rapid growth arrest followed by a subsequent decline in viable counts. The most substantial heat shock-induced changes at both 43°C and 48°C occurred in transcript levels of HrcA- and CtsR-regulated genes, encoding classical chaperones DnaK and GroESL, and some Hsp100/Clp ATPases components, respectively. Other metabolic pathways up-regulated by <it>S. aureus </it>exposure at 48°C included genes encoding several enzymes coping with oxidative stress, and DNA damage, or/and impaired osmotic balance. Some major components of the pentose phosphate cycle and gluconeogenesis were also up-regulated, which reflected depletion of free glucose by bacterial cultures grown in Mueller-Hinton broth prior to heat shock. In contrast, most purine- and pyrimidine-synthesis pathway components and amino acyl-tRNA synthetases were down-regulated at 48°C, as well as arginine deiminase and major fermentative pathway components, such as alcohol, lactate and formate dehydrogenases. Despite the heat-induced, increased requirements for ATP-dependent macromolecular repair mechanisms combined with declining energy sources, intracellular ATP levels remained remarkably constant during heat shock.</p> <p>Conclusion</p> <p>The sequential loss of replication and viability at 48°C cannot be explained by significant reductions in intracellular ATP levels, but may reflect ATP rerouting for macromolecular repair mechanisms and cell survival. Our metabolic model also suggests that heat-stressed <it>S. aureus </it>should down-regulate the production of potential, DNA-damaging reactive oxygen species that might result from electron transport-generated ATP, involving excessive levels of free heavy metals, in particular iron.</p
    • …
    corecore